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Abstract

A harmonic functionH onRn(n�2) is said to be universal (in the sense of Birkhoff) if its set of
translates{x �→ H(a + x): a ∈ Rn} is dense in the space of all harmonic functions onRn with the
topology of local uniform convergence. The main theorem includes the result that such functions,H,
can have any prescribed order and type. The growth result is compared with a similar known theorem
for G.D. Birkhoff’s universal holomorphic functions and contrasted with known growth theorems for
MacLane-type universal harmonic and holomorphic functions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let E denote the space of all entire (holomorphic) functions onC, the complex plane,
andHn the space of all harmonic functions onRn, wheren�2. These spaces are endowed
with the topology of local uniform convergence (the compact-open topology). In 1929 G.
Birkhoff [11] showed that there exist elements ofE whose translates are dense inE ; we call
such elementsuniversal holomorphicfunctions. ThusF is a universal holomorphic function
if F ∈ E and for every compact subsetK of C, everyf ∈ E and every� > 0 there exists
a ∈ C such that|F(z + a) − f (z)| < � for all z in K. Similarly, Dzagnidze [17] showed
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that there exist elements ofHn whose translates are dense inHn; we call theseuniver-
sal harmonicfunctions. Universal functions can easily be shown to exist by a recursive
construction using classical approximation theorems, namely Runge’s theorem in the holo-
morphic case and Walsh’s theorem in the harmonic case (for which see e.g.[18, Theorem
8.4]). Alternatively, modern theorems about tangential approximation on unbounded sets
can be used to give quite short existence proofs (see e.g. [5, Theorem 11.1] and [7] for
the harmonic case). It is obvious from the definitions that universal functions form dense
subsets of the spacesE andHn. Muchmore is true: they form residual subsets; that is to say,
the non-universal functions form first category subsets of the Baire spacesE andHn. This
was proved by Duios Ruis [15] in the holomorphic case, and his proof can be mimicked in
the harmonic case (see e.g. [5, Theorem 11.2]). Also, each of the spacesE andHn contains
an infinite-dimensional closed vector subspace whose elements, except for 0, are universal;
this result is due to Bernal and Montes [10] in the holomorphic case and Bonilla [12] in
the harmonic case. Duios Ruis [16] has sketched a proof of the existence of universal holo-
morphic functions of arbitrarily slow transcendental growth; a precise statement is given
in Section 4 below. More general and more easily accessible results are given by Chan and
Shapiro [14]. In the harmonic case it is easy to modify standard existence proofs to produce
universal functions of arbitrarily rapid growth. In this note we show that universal harmonic
functions can also have slow growth.

Theorem. Let�: [0,+∞)→ (0,+∞) be a continuous increasing function such that
log�(t)

(log t)2
→ +∞ ast → +∞. (1)

There exists a universal harmonic functionH inHn,wheren�2,such that|H(x)|��(‖x‖)
for all x in Rn and

lim sup
x→∞

H(x)/�(‖x‖) = 1. (2)

Thus there are universal harmonic functions of all orders and types, including order 0.
Hitherto it seems to have been uncertain whether such functions could even be of finite
order. It remains an open question whether (1) can be relaxed: can the exponent 2 of logt

be reduced, perhaps to 1?
Another type of universality was introduced by G.R. MacLane[25], who showed that

there exist functionsF in E for which the sequence(F (j)) of derivatives is dense inE .
Similarly there are harmonic functionsH whose partial derivatives form a dense subset of
Hn. In contrast with the Birkhoff type universal functions discussed in this note, MacLane’s
universal functions and their harmonic analogues cannot have very slow growth: they can
be of exponential type 1 but not of exponential type less than 1. A precise description of the
permissible growth rates ofMacLane’s functions is given byGrosse-Erdmann [19] (see also
[21] and [9]), and corresponding results for their harmonic analogues are given by Aldred
and Armitage [2]; see also [3].
Section 2 below contains a sequence of lemmas leading up to the proof of the Theorem,

which is given, for the casen�3, in Section 3. The casen = 2 is treated separately in
Section 4.
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The reader is referred to[20] and [22] for updated surveys about many kinds of univer-
sality and general properties. For discussions of growth rates in relation to other classes of
universal functions, see [4], [23] and [24].

2. Auxiliary results

2.1.

For a subsetE of Rn and a positive numberr, we definerE = {rx: x ∈ E}. As usual
E0, E and�E denote the interior, closure and boundary ofE, respectively. Our first lemma
is a minor extension of a Schwarz lemma due to Bagby and Levenberg [8].

Lemma 1. Let� be a domain inRn, wheren�2, such thatRn\� is compact. Let L be a
closed subset of�, and let r be a positive number. There exist positive constantsC1 and p,
depending only on� and L,with the following property:if u is a function continuous onr�
and harmonic onr�, and there exists an integerj > n− 2 such thatu(x) = O(‖x‖−j ) as
x → ∞, then

max
rL

|u|�C1e
−pj max

r��
|u|.

With r = 1, Lemma 1 is a paraphrase of[8, Corollary 2.5], and the general result follows
by a simple dilation argument.

2.2.

The open ball of centrex and radiusr in Rn is denoted byB(x, r). We denote byy(t)
the point ofRn with coordinates(10t, 0, . . . ,0) and define

T (t, r) = B(0, r) ∪ B(y(t), r),
where 0< r�5t. We writeHj,n for the space of all harmonic polynomials of degree at
mostj onRn. For a compact subsetK of Rn and a bounded functionu onK, we define

dj (u,K) = inf

{
sup
K

|u− P |:P ∈ Hj,n

}
.

Lemma 2. There exist positive numbersC2 and p,depending only on n,with the following
property. If r > 0 and j, k are positive integers,and if u is a harmonic function onRn,
wheren�3, satisfying

|u| < rk+1 onB(y(r), 5r), (3)

then

dj (ũ, T (r, r)) < C2r
k+1e−pj , (4)

whereũ = 0 onB(0, r) andũ = u onB(y(r), r).
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A small modification to Lemma 2 is required in the casen = 2; this is discussed in
Section 4 below. We start the proof of Lemma 2 with the observation that ifu ∈ Hn and
satisfies (3), then

|�u/�xm|�2nrk onB(y(r), 4r) (m = 1, . . . , n); (5)

this follows easily from Harnack’s inequalities (see e.g.[6, p. 14]). Let�o:Rn → [0, 1] be
an infinitely differentiable function such that�o = 1 on B(0, 3) and supp�o ⊂ B(0, 4).
Then there exists a positive constantC, depending only on�o and hence only onn, such
that ∣∣∣∣��o

�xm

∣∣∣∣ +
∣∣∣∣∣
�2�o
�x2m

∣∣∣∣∣ �C onRn (m = 1, . . . , n).

We define�(x) = �o((x − y(r))/r). Then� = 1 on B(y(r),3r) and supp� ⊂ B(y(r),

4r). Also
∣∣∣∣ ��

�xm

∣∣∣∣ �Cr−1,

∣∣∣∣∣
�2�
�x2m

∣∣∣∣∣ �Cr−2 onRn (m = 1, . . . , n). (6)

We defineV = �u. From now on our proof is closely modelled on the proof of[8, Theorem
3.1]. Let j be a fixed positive integer. As is remarked in [8], the Hahn-Banach theorem and
theRiesz representation theorem imply the existence of a signedmeasure� of total variation
1 such that supp� ⊆ T (r, r),∫

P d� = 0 for all P ∈ Hj,n (7)

and

dj (ũ, T (r, r)) =
∫
V d�.

SinceV is infinitely differentiable onRn and has compact support,

V (x) = cn
∫

‖x − y‖2−n�V (y) d�(y) (x ∈ Rn),

where� denotesn-dimensional Lebesgue measure,� is the Laplacian operator onRn, and
the constantcn is given bycn = ((2− n)�n)−1, where�n denotes the(n− 1)-dimensional
surface area of�B(0, 1); see e.g.[6, Lemma 4.3.6]. Integrating with respect to� and using
Fubini’s theorem to justify a change of order of integration, we find that

dj (ũ, T (r, r)) =
∫
V d� =

∫
v�V d�, (8)

where

v(x) = cn
∫

‖x − y‖2−n d�(y). (9)

(Our proof of (8) is essentially the same as the more succinct argument given in[8,
pp. 12–13].)



234 D.H. Armitage / Journal of Approximation Theory 136 (2005) 230–243

Our first step in estimating the integral in (8) is to estimate�V . We have

|�V |� |u��| + 2
n∑
m=1

∣∣∣∣ ��

�xm

�u
�xm

∣∣∣∣ .
Since suppV ⊂ B(y(r), 4r) it follows from (3), (5) and (6) that

|�V |�Cnrk−1 + 4Cn2rk−1 = C′rk−1, (10)

whereC′ = Cn(4n + 1). Next we estimatev. Since supp� ⊂ T (r, r) and� has total
variation 1, we see that

|v|�cnr2−n on �T (r, 2r). (11)

Now, with a view to applying Lemma 1, we consider the behaviour ofv(x) asx → ∞. It
is well known (see e.g.[5, p. 49] or [18, p. 75]) that

‖x − y‖2−n =
∞∑
m=0

bmPm(x, y) (‖x‖ > ‖y‖), (12)

where

bm =
(
m+ n− 3

m

)
= O(mn−3) asm→ ∞

and the functionsPm have the following properties: for eachx in Rn\{0} the function
Pm(x, ·) is a homogeneous harmonic polynomial of degreem; for eachy in Rn the function
Pm(·, y) is harmonic onRn\{0}, and

|Pm(x, y)|�‖x‖2−n−m‖y‖m (x, y ∈ Rn, x �= 0).

Since supp� ⊆ T (r, r) ⊂ B(0, 11r), we find, using (7) and the properties ofPm, that when
‖x‖ > 11r

|v(x)| � cn

∞∑
m=j+1

∣∣∣∣bm
∫
Pm(x, y) d�(y)

∣∣∣∣

� cn

∞∑
m=j+1

bm sup{|Pm(x, y)|: y ∈ T (r, r)}

= O


‖x‖2−n

∞∑
m=j+1

mn−3(11r/‖x‖)m



= O(‖x‖1−n−j) asx → ∞. (13)

We take� = Rn\T (1,2) and L = Rn\T (1,3)◦ in Lemma 1 and note thatr� =
Rn\T (r, 2r) and rL = Rn\T (r, 3r)◦. Let C1 andp be the constants in Lemma 1 cor-
responding to this choice of� andL. ThusC1 andp now depend only onn. Sincev is
harmonic onRn\T (r, r) and satisfies (11) and (13), it follows from Lemma 1 that

|v(x)|�C1cnr
2−ne−p(n+j−1) (x ∈ Rn\T (r, 3r)◦). (14)
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Since

supp�V ⊂ B(y(r), 4r)\B(y(r), 3r)⊂ Rn\T (r, 3r)◦,

we find, using (8), (10) and (14), that

dj (ũ, T (r, r)) � C′rk−1C1cnr
2−ne−p(n+j−1)�(B(0, 4r)\B(0, 3r))

< C2r
k+1e−pj ,

whereC2 depends only onn.

2.3.

Lemma 3. If r > 0 andP ∈ Hk,n for some positive integer k,then

|P(x)| < C3(k + 1)n/2(‖x‖/r)k sup
�B(0,r)

|P | (‖x‖ > r),

whereC3 is a constant depending only on n.

To prove this, letP = ∑k
j=0Pj , wherePj is a homogeneous harmonic polynomial of

degreej. Then it is known that

sup
�B(0,r)

|Pj |�C3(j + 1)(n−2)/2 sup
�B(0,r)

|P | (j = 0, 1, . . . , k), (15)

whereC3 depends only onn. In the case wherer = 1, the inequality (15) follows from
an inequality of Brelot and Choquet[13, Proposition 4] (or see e.g. [6, Corollary 2.3.8]),
which shows that sup�B(0,1) |Pj |�(�jM(Pj ))1/2, whereM(Pj ) denotes the mean value of

P 2
j on�B(0, 1) and�j is the dimension of the vector space of all homogeneous harmonic

polynomials of degreej onRn. We note that�j = O(jn−2) asj → ∞; this follows easily
from an explicit formula for�j (for which, see e.g. [6, Corollary 2.1.4]). Details of the proof
of (15) with r = 1 are given in [1]. The general case is obtained by a dilation argument.
Using (15) and the homogeneity ofPj , we find that if‖x‖ > r, then

|P(x)|�
k∑
j=0

|Pj (x)| =
k∑
j=0

(‖x‖/r)j |Pj (rx/‖x‖)|

�
k∑
j=0

(‖x‖/r)jC3(j + 1)(n−2)/2 sup
�B(0,r)

|P |

< C3(k + 1)n/2(‖x‖/r)k sup
�B(0,r)

|P |.
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2.4.

Lemma 4. Let � be as in the Theorem,and letP,Q be harmonic polynomials onRn,
wheren�3. If � > 0 and r is sufficiently large,then there exists a harmonic polynomial F
such that

|F | < � on B(0, r),

|F(x)− (Q(x)+ P(x − y(r)))| < � (x ∈ B(y(r), r))
and

|F(x)| < ��(‖x‖) (x ∈ Rn). (16)

To prove this, we note first there exist a positive numberA and an integerk�2 such that

|P(x)| + |Q(x)| < A(1+ ‖x‖)k (x ∈ Rn).

Then, if r is sufficiently large,

|P(x − y(r))| + |Q(x)| < A(1+ 5r)k + A(1+ 15r)k < rk+1

(x ∈ B(y(r), 5r)). (17)

We suppose without loss of generality that�(0) < 1,� < 1 andC3 > 1. We now fix a
numberr > e so large that (17) holds together with the following inequalities:

�(t) > t(2k log t)/p (t�r), (18)

C2er
1−k < ��(0)/C3, (19)

(1+ (2k/p) logr)n/2r1−(2k logr)/p < 1. (20)

Letmbe the greatest integer not exceeding(2k logr)/p. By Lemma 2 there is an element
F of Hm,n such that

|F | < C2r
k+1e−pm onB(0, r) (21)

and

|F(x)− (Q(x)+ P(x − y(r)))| < C2r
k+1e−pm (x ∈ B(y(r), r)). (22)

Now e−pm < er−2k by our choice ofm. Hence by (19),

|F | < ��(0)/C3 onB(0, r) (23)

and

|F(x)− (Q(x)+ P(x − y(r)))| < ��(0)/C3 < � (x ∈ B(y(r), r)).
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By (23) and Lemma 3, and then by definition ofm, (20) and (18),

|F(x)| < �(m+ 1)n/2(‖x‖/r)m (‖x‖ > r)

<
�(1+ (2k logr)/p)n/2‖x‖(2k logr)/p

r−1+(2k logr)/p

< �‖x‖(2k log‖x‖)/p < ��(‖x‖),
which, together with (23), shows that (16) holds.

2.5.

Lemma 5. Let �: [0,+∞) → (0,+∞) be a continuous increasing function such that
log�(t)/ log t → +∞ as t → ∞. Let �, �, r be positive numbers with� < 1.Then there
exists a harmonic polynomial G onRn such that|G| < � onB(0, r) and

|G(x)|�(1− �)�(‖x‖)
for all x in Rn with equality for some x.

By Walsh’s theorem on harmonic approximation (see e.g.[18, p. 8]) there exists a har-
monic polynomialGo such that|Go| < � on B(0, r) andGo(xo) > �(‖xo‖) for some
xo in Rn. Now the functionGo(x)/�(‖x‖) tends to 0 asx → ∞ and therefore attains a
maximum valuec, say, at some pointy. We defineG = (1− �)Go/c. Sincec > 1, we see
that|G|� |Go| < � onB(0, r). Also, for eachx in Rn

|G(x)| = (1− �)c−1|Go(x)|�(1− �)�(‖x‖)
with equality whenx = y.

3. Proof of the Theorem forn�3

3.1.

Throughout this sectionwesuppose thatn�3.TheTheoremwill followwithout difficulty
from the following result, which will be proved by using Lemmas 4 and 5.

Proposition. Let� be as in the Theorem,and let(Pm) be a sequence of harmonic poly-
nomials. There exist sequences(	m), (�m) of points on the positivex1-axis ofR

n such that

0< 2‖	m‖ < ‖�m‖ < 10−1‖	m+1‖
and harmonic polynomialsHm such that

|Hm| < 2−m�(0) onB(0, 10−1‖	m‖),
|(H1 + · · · +Hm)(x)− Pm(x − 	m)| < 2−m (x ∈ B(	m, 10−1‖	m‖)),
|(H1 + · · · +Hm)(x)| < (1− 2−m−2)�(‖x‖) (x ∈ Rn), (24)
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and

|(H1 + · · · +Hm)(�m)| > (1− 2−m�(‖�m‖)).

In proving the Proposition, we suppose without loss of generality that�(0)<1. By
Lemma 4 there exist a harmonic polynomialF1 and a positive numberr such that

|F1| < 2−2�(0) onB(0, r), (25)

|F1(x)− P1(x − y(r))| < 2−3�(0) (x ∈ B(y(r), r)), (26)

and

|F1(x)| < 2−3�(‖x‖) (x ∈ Rn). (27)

We choose	1 = y(r). By Lemma 5 there exists a harmonic polynomialG1 such that

|G1| < 2−2�(0) onB(0, 2‖	1‖) (28)

and

|G1(x)|�(1− 2−2)�(‖x‖) (x ∈ Rn) (29)

with equality at some point�1. Clearly‖�1‖ > 2‖	1‖ and we may suppose (by composing
G1 with a rotation ofRn) that�1 lies on the positivex1-axis. LetH1 = F1 +G1. Then, by
(25) and (28),

|H1|� |F1| + |G1| < 2−1�(0) onB(0, 10−1‖	1‖),
and

|H1(x)− P1(x − 	1)| � |F1(x)− P1(x − 	1)| + |G1(x)|
� 2−3�(0)+ 2−2�(0) < 2−1�(0) (x ∈ B(	1, 10−1‖	1‖))

by (26) and (28). Also, for allx in Rn,

|H1(x)|� |F1(x)|+|G1(x)| < 2−3�(‖x‖)+(1− 2−2)�(‖x‖) = (1− 2−3)�(‖x‖)
by (27) and (29), and

|H1(�1)| � |G1(�1)| − |F1(�1)|
> (1− 2−2)�(‖�1‖)− 2−3�(‖�1‖) > (1− 2−1)�(‖�1‖)

by (27) and the fact that equality holds in (29) whenx = �1.
Now suppose thatHj , 	j , �j have been found forj = 1, . . . , m. By Lemma 4, ifr is

sufficiently large, then there exists a harmonic polynomialFm+1 such that

|Fm+1| < 2−m−4�(0) onB(0, r), (30)
∣∣∣∣∣∣Fm+1(x)− (Pm+1(x − y(r))−

m∑
j=1

Hm(x))

∣∣∣∣∣∣ < 2−m−3�(0)

(x ∈ B(y(r), r)) (31)
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and

|Fm+1(x)| < 2−m−4�(‖x‖) (x ∈ Rn). (32)

Let r > 2‖�m‖ be so large that such a polynomialFm+1 exists and also so large that

|(H1 + · · · +Hm)(x)| < 2−m−4�(‖x‖) (‖x‖�r). (33)

Let	m+1 = y(r). Thenr = 10−1‖	m+1‖. By Lemma5, there exists a harmonic polynomial
Gm+1 such that

|Gm+1| < 2−m−4�(0) onB(0, 2‖	m+1‖) (34)

and

|Gm+1(x)|�(1− 2−m−2)�(‖x‖) (x ∈ Rn) (35)

with equality whenx = �m+1, where�m+1 is some point such that‖�m+1‖ > 2‖	m+1‖,
which we may assume lies on thex1-axis. LetHm+1 = Fm+1 +Gm+1. Then, by (30) and
(34),

|Hm+1|� |Fm+1| + |Gm+1| < 2−m−3�(0) onB(0, 10−1‖	m+1‖),

and ∣∣∣∣∣∣
m+1∑
j=1

Hj(x)− Pm+1(x − 	m+1)

∣∣∣∣∣∣
� |Gm+1(x)| +

∣∣∣∣∣∣
m∑
j=1

Hk(x)+ Fm+1(x)− Pm+1(x − 	m+1)

∣∣∣∣∣∣
< 2−m−4�(0)+ 2−m−3�(0) < 2−m−2 (x ∈ B(	m+1, 10

−1‖	m+1‖)),
by (34) and (31). Also

∣∣∣∣∣∣
m+1∑
j=1

Hj

∣∣∣∣∣∣ �

∣∣∣∣∣∣
m∑
j=1

Hj

∣∣∣∣∣∣ + |Fm+1| + |Gm+1|.

Hence if‖x‖ < 10−1‖	m+1‖, then
∣∣∣∣∣∣
m+1∑
j=1

Hj(x)

∣∣∣∣∣∣ < (1− 2−m−2)�(‖x‖)+ 2−m−3�(0) < (1− 2−m−3)�(‖x‖)
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by the inductive estimate (24) for|∑m
j=1Hj | and (30) and (34); if‖x‖�10−1‖	m+1‖,

then ∣∣∣∣∣∣
m+1∑
j+1

Hj(x)

∣∣∣∣∣∣< 2−m−4�(‖x‖)+ 2−m−4�(‖x‖)+ (1− 2−m−2)�(‖x‖)

= (1− 2−m−3)�(‖x‖)
by (33), (32) and (35). Finally,∣∣∣∣∣∣

m+1∑
j=1

Hj(�m+1)

∣∣∣∣∣∣ � |Gm+1(�m+1)| − |Fm+1(�m+1)| −
∣∣∣∣∣∣
m+1∑
j=1

Hj(�m+1)

∣∣∣∣∣∣
� (1− 2−m−2)�(‖�m+1‖)− 2−m−3�(‖�m+1‖)
> (1− 2−m−1)�(‖�m+1‖)

by (32), (33) and the equality that holds in (35) whenx = �m+1. This completes the proof
of the Proposition.

3.2.

Here we complete the proof of the Theorem for the case wheren�3. We suppose that
the sequence(Pm) of harmonic polynomials in the Proposition is dense inHn. Let the
harmonic polynomialsHm and the points	m, �m be as in the Proposition. IfR > 0 and
‖	m0‖ > 10R, then|Hm| < 2−m�(0) on B(0, R), wheneverm > mo. Hence

∑∞
1 Hm

converges locally uniformly onRn to some harmonic functionH on Rn. It follows from
(24) that|H(x)|��(‖x‖) for eachx in Rn. Also

|H(�m)| �

∣∣∣∣∣∣
m∑
j=1

Hj(�m)

∣∣∣∣∣∣ −
∞∑

j=m+1

|Hj(�m)|

� (1− 2−m)�(‖�m‖)−
∞∑

j=m+1

2−j�(0),

so (2) holds.
It remains to show thatH is universal. LetK be a compact set inRn, leth ∈ Hn, and let�

be a positive number. We choose an integermsuch that|Pm − h| < �/3 on K, so large that
K ⊂ B(0, 10−1‖	m‖) and 2−m < �/3. If x ∈ K, thenx + 	m ∈ B(	m, 10−1‖	m‖), so

|H(x + 	m)− h(x)| � |H(x + 	m)− Pm(x)| + |Pm(x)− h(x)|

�

∣∣∣∣∣∣
m∑
j=1

Hj(x + 	m)− Pm(x)
∣∣∣∣∣∣ +

∞∑
j=m+1

|Hj(x + 	m)| + �/3

< 2−m +
∞∑

j=m+1

2−j + �/3< �.
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4. The casen = 2

4.1.

We indicate here the minor changes that are required to prove the Theorem in the case
n = 2. We start with a modification of Lemma 2.

Lemma 2′. There exist positive numbersC2 and p with the following property. Ifr > 2
andj, k are positive integers,and if u is a harmonic function onR2 satisfying(3), then

dj (ũ, T (r, r)) < C2r
k+1e−pj logr, (36)

whereũ = 0 onB(0, r) andũ = u onB(y(r), r).

Lemma 2′ is proved by making some alterations to the proof of Lemma 2. The first
change is in formula (9) definingv(x), as we now explain. In proving (8), we need to
replace the fundamental function‖x − y‖2−n on Rn × Rn(n�3) by the corresponding
function− log‖x−y‖ onR2×R2. With this modification, we find, again using[6, Lemma
4.3.6], that (8) holds withn = 2, provided we replace the definition (9) by

v(x) = −(2
)−1
∫

log‖x − y‖ d�(y). (37)

The estimate (11) for|v| is modified as follows. Since 2< r�‖x − y‖�13r whenx ∈
�T (r, 2r) andy ∈ T (r, r), and since� is a signed measure of total variation 1 with support
contained inT (r, r), we have

|v|�(2
)−1 log(13r) on �T (r, 2r). (38)

The formula corresponding to (12) is

log‖x − y‖ = log‖x‖ +
∞∑
m=1

m−1Pm(x, y) (‖x‖ > ‖y‖), (39)

where the functionsPm have the same properties as in the case wheren�3; see e.g.[5, p.
49] or [18, p. 75]. (Explicitly, ifx = (� cos�, � sin�) andy = (�′ cos�, �′ sin�), then a
calculation shows thatPm(x, y) = −(�′/�)m cosm(� − �).) Using (37), (39), (7) and the
properties ofPm we see that (13) holds in the casen = 2. From (38), (13) and Lemma 1,
we find that withn = 2 an inequality corresponding to (14) is

|v(x)|�(2
)−1C1 log(13r)e
−p(j+1) (x ∈ R2\T (r, 3r)◦).

Arguing as in the final sentence of Section 2.2 and noting that log(13r) <5 logr when
r > 2, we find that (36) holds.
We claim that Lemma 4 holds without alteration withn = 2. To prove Lemma 4 with

n = 2 we replace the requirement (19) by the condition

C2er
1−k logr < ��(0)/C3. (40)
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Sincewemust useLemma2′ in placeof Lemma2,wefind that a factor logrmust be inserted
on the right-hand sides of (21) and (22). In view of (40), we see that these modifications of
(21) and (22) imply that inequality (23) and the inequality immediately following it hold
without alteration in the casen = 2. The proof of Lemma 4 forn = 2 can now be completed
exactly as in the final sentence of Section 2.4. The proof of theTheorem inSection 3 depends
only on Lemmas 4 and 5. Lemma 5 is valid for all dimensionsn�2, and we have just seen
that Lemma 4 also holds withn = 2. The proof of the Theorem forn = 2 can now be
completed exactly as in Section 3.

4.2.

The existence of slowly growing universal harmonic functions onR2 can also be deduced
from corresponding growth results for universal holomorphic functions. WithR2 andC

identified in the usual way, it is easy to see that the real part of a universal holomorphic
function is a universal harmonic function onR2. Duios Ruis[16] (see also [14]) showed
that if � is an entire function given by�(z) = ∑∞

j=0 aj z
j , where the coefficientsaj are

positive and the sequence(aj+1/aj ) is decreasing with limit 0, then there exists a universal
entire holomorphic functionF such that|F(z)| = O(�(|z|)) uniformly asz → ∞. The
real part ofF is a universal harmonic function onR2 satisfying the same growth condition.
Since such functions� can be of arbitrarily slow transcendental growth, this shows that in
some respects our Theorem can be improved, at least in the casen = 2.

References

[1] M.P. Aldred, D.H. Armitage, Bounds for the terms in a harmonic polynomial expansion, Math. Proc.
Cambridge Philos. Soc. 123 (1998) 325–327.

[2] M.P. Aldred, D.H. Armitage, Harmonic analogues of G.R. MacLane’s universal functions, J. London Math.
Soc. (2) 57 (1998) 148–156.

[3] M.P. Aldred, D.H. Armitage, Harmonic analogues of G.R. MacLane’s universal functions II, J. Math. Anal.
Appl. 220 (1998) 382–395.

[4] N.U. Arakelian, A.M. Hakopian, Entire functions with infinite sets of deficient functions, Israel Math. Conf.
Proc. 15 (2001) 11–19.

[5] D.H. Armitage, Uniform and tangential harmonic approximation, in: N. Arakelian, P.M. Gauthier (Eds.),
Approximation, Complex Analysis, and Potential Theory, NATO Science Series II, vol. 37, Kluwer,
Dordrecht, 2001, pp. 29–71.

[6] D.H. Armitage, S.J. Gardiner, Classical Potential Theory, Springer, London, 2001.
[7] D.H. Armitage, P.M. Gauthier, Recent developments in harmonic approximation, with applications, Results

Math. 29 (1996) 1–15.
[8] T. Bagby, N. Levenberg, Bernstein theorems for harmonic functions, in: A.A. Gonchar, E.A. Saff (Eds.),

Methods of Approximation Theory in Complex Analysis and Mathematical Physics, Lecture Notes in
Mathematics, vol. 1550, Springer, Berlin, 1993, pp. 7–18.

[9] L. Bernal-González, A. Bonilla, Exponential type of hypercyclic entire functions, Arch. Math. 78 (2002)
283–290.

[10] L. Bernal-González, A. Montes-Rodriguez, Non-finite dimensional closed vector spaces of universal
functions for composition operators, J. Approx. Theory 82 (1995) 375–391.

[11] G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C.R. Acad. Sci. Paris
189 (1929) 473–475.

[12] A. Bonilla, Universal harmonic functions, Quaest. Math. 25 (2002) 527–530.



D.H. Armitage / Journal of Approximation Theory 136 (2005) 230–243 243

[13] M. Brelot, G. Choquet, Polynômes harmoniques et polyharmoniques, in: Second colloque sur les équations
aux dérivées partielles, Bruxelles, 1954, Georges Thone, Liège, Masson & Cie, Paris, 1955, pp. 45–66.

[14] K.C. Chan, J.H. Shapiro, On cyclic behavior of translation operators on Hilbert spaces of entire functions,
Indiana Univ. Math. J. 40 (1991) 1421–1449.

[15] S.M. Duios Ruis, On the existence of universal functions, Dokl. Akad. Nauk SSSR 268 (1983) (Russian);
Soviet Math. Dokl. 27 (1983) 9–13 (English translation).

[16] S.M. Duios Ruis, Universal functions and the structure of the space of entire functions, Dokl. Akad. Nauk
SSSR 279 (1984) 792–795 (Russian); Soviet Math. Dokl. 30 (1984) 713-716 (English translation).

[17] P. Dzagnidze, The universal harmonic function in the spaceEn, Soobš̌c. Akad. Nauk Gruzin. SSR 34 (1964)
525–528 (Russian).

[18] S.J. Gardiner, Harmonic Approximation, London Mathematical Society, Lecture Notes Series, vol. 221,
Cambridge University Press, Cambridge, UK, 1995.

[19] K.-G. Grosse-Erdmann, On the universal functions of G.R. MacLane, Complex Variables Theory Appl. 15
(1990) 193–196.

[20] K.G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999)
345–381.

[21] K.G. Grosse-Erdmann, Rate of growth of hypercyclic entire functions, Indag. Math. 11 (2000) 561–571.
[22] K.G. Grosse-Erdmann, Recent developments in hypercyclicity, Rev. Real Acad. Cienc. Serie A Mat. 97

(2003) 273–286.
[23] W. Luh, V.A. Martirosian, On the growth of universal meromorphic functions, Analysis 20 (2000) 137–147.
[24] W. Luh, V.A. Martirosian, The growth of universal meromorphic functions in a disk, Izv. Nats. Akad. Nauk

37 (2002) 12–26.
[25] G.R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 l (1952/53) 72–87.


