Available online at www.sciencedirect.com ——————
JOURNAL OF
SCIENCE DIRECT® . .
@ Approximation
Theory

e SRT
ELSEVIER Journal of Approximation Theory 136 (2005) 230—243 —
www.elsevier.com/locate/jat

Permissible growth rates for Birkhoff type universal
harmonic functions

D.H. Armitagé€
Department of Pure Mathematics, Queen’s University Belfast, Belfast BT7 1NN, UK
Received 18 May 2004; accepted 6 July 2005

Communicated by Manfred v Golitschek

Abstract

A harmonic functiorH on R” (n > 2) is said to be universal (in the sense of Birkhoff) if its set of
translatedx — H(a + x):a € R"} is dense in the space of all harmonic functions®¥nwith the
topology of local uniform convergence. The main theorem includes the result that such furtdtions,
can have any prescribed order and type. The growth result is compared with a similar known theorem
for G.D. Birkhoff’s universal holomorphic functions and contrasted with known growth theorems for
MacLane-type universal harmonic and holomorphic functions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let £ denote the space of all entire (holomorphic) functionglorthe complex plane,
and?, the space of all harmonic functions &1, wheren > 2. These spaces are endowed
with the topology of local uniform convergence (the compact-open topology). In 1929 G.
Birkhoff [11] showed that there exist elements£ofvhose translates are denseirwe call
such elementsniversal holomorphiéunctions. Thug$ is a universal holomorphic function
if F e £ and for every compact subgétof C, every f € £ and every: > 0 there exists
a € CsuchthatF(z + a) — f(z)| < ¢for all zin K. Similarly, Dzagnidze [17] showed

* Fax: +44 28 9097 5076.
E-mail addressd.armitage@qub.ac.uk

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.07.006


http://www.elsevier.com/locate/jat
mailto:d.armitage@qub.ac.uk

D.H. Armitage / Journal of Approximation Theory 136 (2005) 230—-243 231

that there exist elements &, whose translates are densef); we call theseuniver-

sal harmonicfunctions. Universal functions can easily be shown to exist by a recursive
construction using classical approximation theorems, namely Runge’s theorem in the holo-
morphic case and Walsh’s theorem in the harmonic case (for which sd&&.@heorem

8.4]). Alternatively, modern theorems about tangential approximation on unbounded sets
can be used to give quite short existence proofs (see e.g. [5, Theorem 11.1] and [7] for
the harmonic case). It is obvious from the definitions that universal functions form dense
subsets of the spac€sand#,,. Much more is true: they form residual subsets; that is to say,
the non-universal functions form first category subsets of the Baire sgaaed?,,. This

was proved by Duios Ruis [15] in the holomorphic case, and his proof can be mimicked in
the harmonic case (see e.g. [5, Theorem 11.2]). Also, each of the spand${,, contains

an infinite-dimensional closed vector subspace whose elements, except for 0, are universal;
this result is due to Bernal and Montes [10] in the holomorphic case and Bonilla [12] in
the harmonic case. Duios Ruis [16] has sketched a proof of the existence of universal holo-
morphic functions of arbitrarily slow transcendental growth; a precise statement is given
in Section 4 below. More general and more easily accessible results are given by Chan and
Shapiro [14]. In the harmonic case it is easy to modify standard existence proofs to produce
universal functions of arbitrarily rapid growth. In this note we show that universal harmonic
functions can also have slow growth.

Theorem. Let ¢: [0, +00) — (0, +00) be a continuous increasing function such that
log (1)
(logr)?

There exists a universal harmonic function HHp, wheren > 2,such that H (x)| < ¢ (]| x]|)

for all x in R* and

limsupH (x)/¢(|x|) = 1. (2)

X—> 00

— 400 ast — +oo. D)

Thus there are universal harmonic functions of all orders and types, including order O.
Hitherto it seems to have been uncertain whether such functions could even be of finite
order. It remains an open question whether (1) can be relaxed: can the exponent 2 of log
be reduced, perhaps to 1?

Another type of universality was introduced by G.R. MacL§2&], who showed that
there exist function§ in £ for which the sequencer ")) of derivatives is dense if.
Similarly there are harmonic functiokéwhose partial derivatives form a dense subset of
‘H,,. In contrast with the Birkhoff type universal functions discussed in this note, MacLane’s
universal functions and their harmonic analogues cannot have very slow growth: they can
be of exponential type 1 but not of exponential type less than 1. A precise description of the
permissible growth rates of MacLane’s functions is given by Grosse-Erdmann [19] (see also
[21] and [9]), and corresponding results for their harmonic analogues are given by Aldred
and Armitage [2]; see also [3].

Section 2 below contains a sequence of lemmas leading up to the proof of the Theorem,
which is given, for the case> 3, in Section 3. The case = 2 is treated separately in
Section 4.
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The reader is referred {20] and [22] for updated surveys about many kinds of univer-
sality and general properties. For discussions of growth rates in relation to other classes of
universal functions, see [4], [23] and [24].

2. Auxiliary results
2.1.

For a subseE of R" and a positive numbet we definer £ = {rx:x € E}. As usual
E°, E anddE denote the interior, closure and boundargofespectively. Our first lemma
is a minor extension of a Schwarz lemma due to Bagby and Levenberg [8].

Lemma 1. LetQ be a domain ifiR"*, wherern > 2, such thatR”\Q is compact. Let L be a
closed subset &®, and let r be a positive number. There exist positive consténend p,
depending only of2 and L,with the following propertyif u is a function continuous orQ
and harmonic onrQ, and there exists an integgr> n — 2 such that«(x) = O(||x|| /) as
x — oo, then

max|u| < Cie P/ max|ul.
rL roQ

Withr = 1, Lemma 1 is a paraphrase[8f Corollary 2.5], and the general result follows
by a simple dilation argument.

2.2

The open ball of centre and radiug in R” is denoted byB(x, r). We denote by (¢)
the point ofR" with coordinateg10r, O, ..., 0) and define

T(t,r) = B0, r)U B(y(t), r),

where 0< r <5z. We write ?{; ,, for the space of all harmonic polynomials of degree at
mostj on R". For a compact subsktof R" and a bounded functiomon K, we define

dj(u, K) = inf {supm — P|:P ¢ H./,n} .
K

Lemma 2. There exist positive numbets and p,depending only on rwith the following
property. If - > 0 and j, k are positive integersand if u is a harmonic function of®”",
wheren > 3, satisfying

lu| < 7**1 on B(y(r), 5r), 3)
then
dj(ii, T(r,r)) < Cor*Te™Pi, 4)

wherei = 00on B(0, r) andit = u on B(y(r), r).
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A small modification to Lemma 2 is required in the case= 2; this is discussed in
Section 4 below. We start the proof of Lemma 2 with the observation thatift, and
satisfies (3), then

|0u/0xp,| <2nr%  onB(y(r),4r) (m=1,...,n); (5)

this follows easily from Harnack’s inequalities (see ¢6gp. 14]). Lety,: R* — [0, 1] be
an infinitely differentiable function such thét, = 1 on BQ, 3) and supp/, C B(0, 4).
Then there exists a positive const&htdepending only oy, and hence only on, such
that

o,

+
Oxpm,

>y,
2

0xz,

<C onR" m=1,...,n).

We definey(x) = y,((x — y(r))/r). Theny = 1 on B(y(r),3r) and supps C B(y(r),
4r). Also

oy

Oxp,

&y

-1
<Cr -,
b ox2

<Cr 2 onR" (m=1,...,n). (6)

We defineV = yu. From now on our proof is closely modelled on the prodi&Theorem

3.1]. Letj be a fixed positive integer. As is remarked in [8], the Hahn-Banach theorem and
the Riesz representation theorem imply the existence of a signed mgadtwéal variation
1suchthatsupp C T(r,r),

/Pduzo forallP € H;, @)
and

di(u,T(r,r)) = / Vdu.
SinceV is infinitely differentiable oriR” and has compact support,

Ve = [ Ix -y IPTAVOIdA) e B,
where/l denotesi-dimensional Lebesgue measukds the Laplacian operator d&*, and
the constant, is given byc, = ((2— n)a,) "L, whereg, denotes then — 1)-dimensional

surface area afB(0, 1); see e.g[6, Lemma 4.3.6]. Integrating with respectg@nd using
Fubini’s theorem to justify a change of order of integration, we find that

di(@,T(r,r)) :/Vd,u:/vAVd/l, (8)
where
v(x) = e / e — Y1277 ducy). ©)

(Our proof of (8) is essentially the same as the more succinct argument givi@, in
pp. 12-13].)
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Ouir first step in estimating the integral in (8) is to estimaté. We have

n

oy 0
AvI<ludy +2 3 | L0
m=1

0x; Oxp

Since supy C B(y(r), 4r) it follows from (3), (5) and (6) that
IAV|<Cnr*¥t + 4cn?r* 1 = '/, (10)

whereC’ = Cn(4n + 1). Next we estimate. Since supp C T (r,r) and u has total
variation 1, we see that

lv|<cnr?™ ondT (r, 2r). (11)

Now, with a view to applying Lemma 1, we consider the behaviour(ef asx — oo. It
is well known (see e.d5, p. 49] or [18, p. 75]) that

b = ylIZ" =D by Pux.y) (x> lIy1D), (12)

m=0

where
by = <’" +n’z _3) —0m"®) asm — oo

and the functionspP,, have the following properties: for eachin R"\{0} the function
P, (x, -) is ahomogeneous harmonic polynomial of degreéor eaclhy in R" the function
P, (-, y) is harmonic orfiR*\ {0}, and

| P e, DI IXIZ ™ Iy I™ (x,y € R, x # 0).

Since supp C T'(r, r) C B(0, 11r), we find, using (7) and the properties®f, that when
x| > 11r

e ¢]

@) <en Y

m=j+1

b / Pp(x,y) du(y)'

oo
<ew Y buSUP{IR(x, )y € T(r,r)

m=j+1
o
=0 (nxnz—" > m"—3<11r/||x||>'")
m=j+1
=o(|x|*™"7) asx — . (13)

We takeQ = R™\T(1,2) and L = R"\T(1,3)° in Lemma 1 and note thatQ =
R"\T(r,2r) andrL = R"\T(r,3r)°. Let C1 andp be the constants in Lemma 1 cor-
responding to this choice @ andL. ThusC1 andp now depend only om. Sincev is
harmonic onR"\T (r, r) and satisfies (11) and (13), it follows from Lemma 1 that

lv(xX)| < Crenr? e POHI=D  (x € R'\T(r, 3r)°). (14)
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Since
SUppAV C B(y(r), 4r)\B(y(r), 3r) C R"\T(r, 3r)°,
we find, using (8), (10) and (14), that

d;j(i, T(r,r)) < C'r*=1Cye,r? e P Hi=D)(B(0, 4r)\ B(O, 3r))
< Corktle—ri,

whereC> depends only on.

2.3.

Lemma 3. If » > 0and P € H,, for some positive integer kKyen

|P(x)] < C3k +1)"2(lIxll/r)* sup [P (x|l > r),
0B(0,r)

whereCs3 is a constant depending only on n.

To prove this, letP = Z];:o P;, whereP; is a homogeneous harmonic polynomial of
degreq. Then it is known that

sup |P;|<Ca(j +1)" 272 sup |P| (j=0,1,...,k), (15)
dB(0,r) 0B(0,r)

whereC3 depends only om. In the case where = 1, the inequality (15) follows from
an inequality of Brelot and Choqut3, Proposition 4] (or see e.qg. [6, Corollary 2.3.8]),
which shows that syg, .1, | Pj| < (5; M (P;))*/2, whereM (P;) denotes the mean value of

Pj2 ondB(0, 1) andé; is the dimension of the vector space of all homogeneous harmonic

polynomials of degregon R". We note that; = 0(j"?) asj — oo; this follows easily
from an explicit formula fod ; (for which, see e.qg. [6, Corollary 2.1.4]). Details of the proof
of (15) withr = 1 are given in [1]. The general case is obtained by a dilation argument.
Using (15) and the homogeneity 8f, we find that if| x| > , then

k k
[P Y 1P =Y (lxl/r)/ 1P rx/IlxID)]
j=0 j=0
k .
<Y lxll/r) Ca(j + 1272 sup [P
j=0 0B(0,r)
< C3(k+1y"2(lIxll/r)* sup [P].
0B(0,r)
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2.4.

Lemma 4. Let ¢ be as in the Theorengnd let P, Q be harmonic polynomials oR",
wheren > 3. If ¢ > 0 and r is sufficiently largethen there exists a harmonic polynomial F
such that

|F| <e on B(0,r),
[F(x) —(Q(x)+ P(x —y(r)| <& (x € B(y(r),r))
and
|IF()| <ep(llxlh)  (x € R™). (16)
To prove this, we note first there exist a positive numfvand an integet > 2 such that
PO+ 10@)| < AL+ [Ix)* (x e RY.
Then, ifr is sufficiently large,

1P — y(r)| + 10()] < AL+ 5r + AL+ 15 < pkt1
(x € B((r), 5r). (17)

We suppose without loss of generality thiai0) < 1,¢ < 1 andCsz > 1. We now fix a
numberr > e so large that (17) holds together with the following inequalities:

G(t) > 1@190/P (1), (18)
Czerl_k < ep(0)/Cs, (19)
(14 (2k/p) logr)"/?rL=@logn/p 1 (20)

Let m be the greatest integer not exceedi@glogr)/p. By Lemma 2 there is an element
F of #H,,,, such that

|F| < Cor**te=P™  on B(O, r) (21)
and

|F(x) = (Q(x) + P(x — y(r)| < Cor*e™P™  (x € B(y(r), ). (22)
Now e~ P" < er—2% by our choice ofm. Hence by (19),

|F| <ep(0)/Cs onB(O,r) (23)
and

|[F(x) = (Q(x) + P(x — y(r))| < £p(0)/C3 <& (x € B(y(r),r)).
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By (23) and Lemma 3, and then by definitionrof (20) and (18),
|F()| < &lm + 12(|lx||/r)™ (xll > r)

e(1+ (2klogr)/p)"/2||x||(@klear/p
= p—1+(2klogr)/p

< eflx||Z19IXD/P < g (|lx]),

which, together with (23), shows that (16) holds.
2.5.

Lemma 5. Let ¢: [0, +00) — (0, +00) be a continuous increasing function such that
log ¢(t)/logt — +oo0 ast — oo. Lete, n, r be positive numbers with < 1. Then there
exists a harmonic polynomial G d&* such thaiG| < ¢ on B(0, r) and

IGI<@A=modixl)
for all x in R" with equality for some x.

By Walsh’s theorem on harmonic approximation (see [, p. 8]) there exists a har-
monic polynomialG, such thatlG,| < ¢ on B(0,r) andG,(x,) > ¢(||x,||) for some
x, in R™. Now the functionG, (x)/¢(||lx||) tends to 0 as — oo and therefore attains a
maximum valuec, say, at some point We defineG = (1 — )G, /c. Sincec > 1, we see
that|G|<|G,| < eon B(0, r). Also, for eachxin R”

1G] = (L= e G0 <L —me(lx)

with equality whernx = y.

3. Proof of the Theorem forn >3
3.1.

Throughout this section we suppose that3. The Theorem will follow without difficulty
from the following result, which will be proved by using Lemmas 4 and 5.

Proposition. Let ¢ be as in the Theorenand let(P,,) be a sequence of harmonic poly-
nomials. There exist sequendé€s,), (11,,) of points on the positive;-axis of R" such that

0 < 2&ull < Il < 1071l
and harmonic polynomial#/,, such that
|Hy| < 27"$(0) on B(0, 107 Y1&,,1D.
[(Hy+ -+ Hp)(x) = Pu(x — E,)] <27 (x € B(&,, 10,1,
I(Hi+ -+ H) ()] < Q=27 9$(Ix])  (x € R, (24)
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and
|(H1+ -+ Hp)(1,) > (L=27"¢(lIn,, ).

In proving the Proposition, we suppose without loss of generality #i@j<1. By
Lemma 4 there exist a harmonic polynomigland a positive numbersuch that

|F1| < 272¢(0) onB(O,r), (25)

|F1(x) — Pi(x — y(r)| < 273¢(0)  (x € B(y(r). 7)), (26)
and

[F10)] < 273 (lxl) - (x € R™). (27)
We choos€&’; = y(r). By Lemma 5 there exists a harmonic polynontal such that

G1l < 27%¢(0) on B(0, 2l|¢1) (28)
and

1G1() <A =272¢(Ix])  (x € R (29)

with equality at some point;. Clearly|n1] > 2|/£1]| and we may suppose (by composing
G1 with a rotation ofR"*) thatn4 lies on the positiver;-axis. LetHy = F1 + G1. Then, by
(25) and (28),

|Hi| <|F1l +|G1l < 27%¢(0) onB(0,107 Y&,
and

|Hi(x) — P1(x — &p)| < [F1(x) — Pilx — &p)| + |Ga(x)]

<273(0) +2729(0) < 27'(0)  (x € B(¢y, 107HalD)

by (26) and (28). Also, for akk in R",

|H1(x)| < |F1(0)|+1G1(x)| < 2730(IxID+(L = 27D p(Ix ) = (L — 273 (lIx )
by (27) and (29), and

|H1(ny)| = 1G1(pp)| — | F1(70)]
> (1= 279¢Unl) — 273Ul > @ —27HeUInl)

by (27) and the fact that equality holds in (29) whee= 7.
Now suppose that/;, ¢;, ; have been found fof = 1,..., m. By Lemma 4, ifr is
sufficiently large, then there exists a harmonic polynomjal ; such that

|Fntal < 27"%$(0) on B(O, r), (30)

Fini1(x) = (Puia(x = y(r) = Y Hu())| < 27" 73¢(0)
j=1
(x € B(y(r), 7)) (31)
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and
|Fns1(0)] < 27" %(lIx])  (x € R"), (32)
Letr > 2|, || be so large that such a polynom#g},; 1 exists and also so large that
[(Hi+ -+ H) @) < 27" (lxl =) (33)

Leté,, .1 = y(@). Thenr = 10—1||ém+1||. By Lemma 5, there exists a harmonic polynomial
G,,+1 such that

G i1l <27"7*G(0) 0N B(O, 2/|&,4all) 34
and

G <AL =272 (lx])  (x € R") (35)
with equality whenx = n,,,,, wheren,, 1 is some point such thalty,, . 1Il > 2[1&,, 111,
which we may assume lies on thg-axis. LetH,, 11 = F,,+1 + G,,+1. Then, by (30) and
(34),

| Hy 1| < | Figal + |Gmgal < 27" 73¢(0)  on B(0, 1071&,,4 11,

and

m+1
D Hj(x) = Pusa(x — Epyr)
j=1

<G+ | D Hi(x) + Fug1(x) = Pupa(x = &up)
j=1

<27 AG0) +27"3h(0) <2772 (x € B(&pi1, 107HIE111D),

by (34) and (31). Also

m+1 m
> Hj| <D Hj| + | Fugal + G-
j=1 j=1

Hence if|x|| < 1071|[&,,44], then

m+1

> Hj(x)

j=1

< @=2""2)p(Ix]) + 27" 3p0) < 1 — 273 (x|
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by the inductive estimate (24) fq[:?’leﬂ and (30) and (34); iflx|| >1071&,, 1,
then

m+1

> Hj(x)

Jj+1

<274l + 27" p(x ) + @ = 27" Al

=1 -2"pIxl)
by (33), (32) and (35). Finally,

m+1

Z Hiny41)
j=1

m+1

Z Hj (41
j=1

> 1-2""2¢Unpsal) — 27" 2 Unsal)

> @=2""HoUnmeal)

by (32), (33) and the equality that holds in (35) whee: #,, ;. This completes the proof
of the Proposition.

= |Gm+1(77m+l)| - |Fm+l(’7m+1)| -

3.2.

Here we complete the proof of the Theorem for the case whegrg. We suppose that
the sequencépP,,) of harmonic polynomials in the Proposition is denseHp. Let the
harmonic polynomial#d,, and the points,,, 7,, be as in the Proposition. R > 0 and
[Emoll > 10R, then|H,| < 27" ¢(0) on B(0, R), wheneverm > m,. Hence) 3° H,,
converges locally uniformly ofi” to some harmonic functioll on R”. It follows from
(24) that|H (x)| < ¢(]|x]|) for eachx in R". Also

[HO)| > D Hi) | = D [Hj(n,)]
j=1 j=m+1
> @=2"¢Un, = Y 27790,
j=m+1
so (2) holds.

It remains to show thatl is universal. LeK be a compact set iR", leth € H,,, and lete
be a positive number. We choose an intagesuch that P, — h| < ¢/3 on K, so large that
K C B(0,107%¢, D and 2™ < &/3.If x € K, thenx + &, € B(&,,, 10711E,, 1), so

|H(x + &) — h0)] < TH(x + $) = P ()] + | P (x) — h(x)]

<Y Hj@+ &) — Pa@)|+ D IHj(x + &) +e/3
j=1 Jj=m+1

o0
<2+ Z 27/ +¢/3<e.
j=m+1
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4. The casen =2
4.1.

We indicate here the minor changes that are required to prove the Theorem in the case
n = 2. We start with a modification of Lemma 2.

Lemma 2. There exist positive numbe€% and p with the following property. if > 2
and j, k are positive integersand if u is a harmonic function oR? satisfying(3), then

dj(a, T(r,r)) < Cor*™te=P ogr, (36)
wherei = 00on B(0, r) andit = u on B(y(r), r).

Lemma 2 is proved by making some alterations to the proof of Lemma 2. The first
change is in formula (9) defining(x), as we now explain. In proving (8), we need to
replace the fundamental functigr — y[|2" on R” x R"(n>3) by the corresponding
function— log ||x — y|| on[R? x R2. With this modification, we find, again usif, Lemma
4.3.6], that (8) holds witlk = 2, provided we replace the definition (9) by

v(x) = —(2m) ! / log lx — yil du(y). (37)

The estimate (11) fop| is modified as follows. Since 2 r <|x — y||<13r whenx €
0T (r, 2r) andy € T (r, r), and since: is a signed measure of total variation 1 with support
contained inf (r, ), we have

lv|<(2m)~tlog(13r) onadT(r, 2r). (38)

The formula corresponding to (12) is

o
logllx — yll =loglxl + 3" m™*Pux.y)  (lxll > Iyl (39)

m=1

where the function®,, have the same properties as in the case wher8; see e.g[5, p.
49] or [18, p. 75]. (Explicitly, ifx = (p cosh, psinf) andy = (p’ cosg, p’ sing), then a
calculation shows thak,, (x, y) = —(p’/p)™ cosm (6 — ¢).) Using (37), (39), (7) and the
properties ofP,, we see that (13) holds in the case= 2. From (38), (13) and Lemma 1,
we find that withn = 2 an inequality corresponding to (14) is

lv(x)| < (2m)~1C1log(13r)e PUFD  (x € RA\T(r, 3r)°).

Arguing as in the final sentence of Section 2.2 and noting that log(13b)logr when
r > 2, we find that (36) holds.

We claim that Lemma 4 holds without alteration with= 2. To prove Lemma 4 with
n = 2 we replace the requirement (19) by the condition

Coer*™*logr < e¢(0)/Cs. (40)
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Since we mustuse Lemmai@ place of Lemma 2, we find that a factor leghust be inserted

on the right-hand sides of (21) and (22). In view of (40), we see that these modifications of
(21) and (22) imply that inequality (23) and the inequality immediately following it hold
without alteration in the case= 2. The proof of Lemma 4 for = 2 can now be completed
exactly as in the final sentence of Section 2.4. The proof of the Theorem in Section 3 depends
only on Lemmas 4 and 5. Lemma 5 is valid for all dimensiaps2, and we have just seen

that Lemma 4 also holds with = 2. The proof of the Theorem for = 2 can now be
completed exactly as in Section 3.

4.2.

The existence of slowly growing universal harmonic function&8ian also be deduced
from corresponding growth results for universal holomorphic functions. \ffttand C
identified in the usual way, it is easy to see that the real part of a universal holomorphic
function is a universal harmonic function étf. Duios Ruis[16] (see also [14]) showed
that if ¢ is an entire function given by (z) = Zj‘;o ajz-/, where the coefficients; are
positive and the sequence; 1/a;) is decreasing with limit 0, then there exists a universal
entire holomorphic functiofr such that F(z)| = O(¢(|z|)) uniformly asz — oo. The
real part ofF is a universal harmonic function d&f satisfying the same growth condition.
Since such functiong can be of arbitrarily slow transcendental growth, this shows that in
some respects our Theorem can be improved, at least in the cage
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